Формула нахождения длины средней линии треугольника. Средняя линия треугольника. Полные уроки — Гипермаркет знаний. Что такое средняя линия треугольника

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть А 1 , А 2 , А 3 - точки пересечения параллельных прямых с одной из сторон угла и А 2 лежит между А 1 и А 3 (рис.1).

Пусть B 1 В 2 , В 3 - соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если А 1 А 2 = A 2 A 3 , то В 1 В 2 = В 2 В 3 .

Проведем через точку В 2 прямую EF, параллельную прямой А 1 А 3 . По свойству параллелограмма А 1 А 2 = FB 2 , A 2 A 3 = B 2 E .

И так как А 1 А 2 = A 2 A 3 , то FB 2 = В 2 Е.

Треугольники B 2 B 1 F и В 2 В 3 Е равны по второму признаку. У них B 2 F = В 2 Е по доказанному. Углы при вершине В 2 равны как вертикальные, а углы B 2 FB 1 и B 2 EB 3 равны как внутренние накрест лежащие при параллельных А 1 В 1 и A 3 B 3 и секущей EF. Из равенства треугольников следует равенство сторон: В 1 В 2 = В 2 В 3 . Теорема доказана.

С использованием теоремы Фалеса устанавливается следующая теорема.

Теорема 2. Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке 2 отрезок ED - средняя линия треугольника ABC.

ED - средняя линия треугольника ABC

Пример 1. Разделить данный отрезок на четыре равные части.

Решение. Пусть АВ - данный отрезок (рис.3), который надо разделить на 4 равные части.

Деление отрезка на четыре равные части

Для этого через точку А проведем произвольную полупрямую а и отложим на ней последовательно четыре равных между собой отрезка AC, CD, DE, ЕК.

Соединим точки В и К отрезком. Проведем через оставшиеся точки С, D, Е прямые, параллельные прямой ВК, так, чтобы они пересекли отрезок АВ.

Согласно теореме Фалеса отрезок АВ разделится на четыре равные части.

Пример 2. Диагональ прямоугольника равна а. Чему равен периметр четырехугольника, вершины которого являются серединами сторон прямоугольника?

Решение. Пусть условию задачи отвечает рисунок 4.

Тогда EF - средняя линия треугольника ABC и, значит, по теореме 2. $$ EF = \frac{1}{2}AC = \frac{a}{2} $$

Аналогично $$ HG = \frac{1}{2}AC = \frac{a}{2} , EH = \frac{1}{2}BD = \frac{a}{2} , FG = \frac{1}{2}BD = \frac{a}{2} $$ и, следовательно, периметр четырехугольника EFGH равен 2a.

Пример 3. Стороны треугольника равны 2 см, 3 см и 4 см, а вершины его - середины сторон другого треугольника. Найти периметр большого треугольника.

Решение. Пусть условию задачи отвечает рисунок 5.

Отрезки АВ, ВС, АС - средние линии треугольника DEF. Следовательно, согласно теореме 2 $$ AB = \frac{1}{2}EF\ \ ,\ \ BC = \frac{1}{2}DE\ \ ,\ \ AC = \frac{1}{2}DF $$ или $$ 2 = \frac{1}{2}EF\ \ ,\ \ 3 = \frac{1}{2}DE\ \ ,\ \ 4 = \frac{1}{2}DF $$ откуда $$ EF = 4\ \ ,\ \ DE = 6\ \ ,\ \ DF = 8 $$ и, значит, периметр треугольника DEF равен 18 см.

Пример 4. В прямоугольном треугольнике через середину его гипотенузы проведены прямые, параллельные его катетам. Найти периметр образовавшегося прямоугольника, если катеты треугольника равны 10 см и 8 см.

Решение. В треугольнике ABC (рис.6)

∠ А прямой, АВ = 10 см, АС = 8 см, KD и MD - средние линии треугольника ABC, откуда $$ KD = \frac{1}{2}AC = 4 см. \\ MD = \frac{1}{2}AB = 5 см. $$ Периметр прямоугольника К DMА равен 18 см.

Четырёхугольник, у которого только две стороны параллельны называются трапецией .

Параллельные стороны трапеции называются её основаниями , а те стороны, которые не параллельны, называются боковыми сторонами . Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия - это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Теорема:

Если прямая, пересекающая середину одной боковой стороны, параллельна основаниям трапеции, то она делит пополам вторую боковую сторону трапеции.

Теорема:

Длина средней линии равна среднему арифметическому длин её оснований

MN || AB || DC
AM = MD; BN = NC

MN средняя линия, AB и CD - основания, AD и BC - боковые стороны

MN = (AB + DC)/2

Теорема:

Длина средней линии трапеции равна среднему арифметическому длин её оснований.

Основная задача : Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема : Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA 1 = A 1 A 2 = A 2 A 3 = A 3 A 4 = A 4 A 5
Мы соединяем A 5 с B и проводим такие прямые через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B. Они пересекают AB соответственно в точках B 4 , B 3 , B 2 и B 1 . Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB 3 A 3 A 5 мы видим, что BB 4 = B 4 B 3 . Таким же образом, из трапеции B 4 B 2 A 2 A 4 получаем B 4 B 3 = B 3 B 2

В то время как из трапеции B 3 B 1 A 1 A 3 , B 3 B 2 = B 2 B 1 .
Тогда из B 2 AA 2 следует, что B 2 B 1 = B 1 A. В заключении получаем:
AB 1 = B 1 B 2 = B 2 B 3 = B 3 B 4 = B 4 B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.

\[{\Large{\text{Подобие треугольников}}}\]

Определения

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого
(стороны называются сходственными, если они лежат напротив равных углов).

Коэффициент подобия (подобных) треугольников – это число, равное отношению сходственных сторон этих треугольников.

Определение

Периметр треугольника – это сумма длин всех его сторон.

Теорема

Отношение периметров двух подобных треугольников равно коэффициенту подобия.

Доказательство

Рассмотрим треугольники \(ABC\) и \(A_1B_1C_1\) со сторонами \(a,b,c\) и \(a_1, b_1, c_1\) соответственно (см. рисунок выше).

Тогда \(P_{ABC}=a+b+c=ka_1+kb_1+kc_1=k(a_1+b_1+c_1)=k\cdot P_{A_1B_1C_1}\)

Теорема

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Доказательство

Пусть треугольники \(ABC\) и \(A_1B_1C_1\) подобны, причём \(\dfrac{AB}{A_1B_1} = \dfrac{AC}{A_1C_1} = \dfrac{BC}{B_1C_1} = k\) . Обозначим буквами \(S\) и \(S_1\) площади этих треугольников соответственно.


Так как \(\angle A = \angle A_1\) , то \(\dfrac{S}{S_1} = \dfrac{AB\cdot AC}{A_1B_1\cdot A_1C_1}\) (по теореме об отношении площадей треугольников, имеющих по равному углу).

Так как \(\dfrac{AB}{A_1B_1} = \dfrac{AC}{A_1C_1} = k\) , то \(\dfrac{S}{S_1} = \dfrac{AB}{A_1B_1}\cdot\dfrac{AC}{A_1C_1} = k\cdot k = k^2\) , что и требовалось доказать.

\[{\Large{\text{Признаки подобия треугольников}}}\]

Теорема (первый признак подобия треугольников)

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

Доказательство

Пусть \(ABC\) и \(A_1B_1C_1\) – треугольники такие, что \(\angle A = \angle A_1\) , \(\angle B = \angle B_1\) . Тогда по теореме о сумме углов треугольника \(\angle C = 180^\circ - \angle A - \angle B = 180^\circ - \angle A_1 - \angle B_1 = \angle C_1\) , то есть углы треугольника \(ABC\) соответственно равны углам треугольника \(A_1B_1C_1\) .


Так как \(\angle A = \angle A_1\) и \(\angle B = \angle B_1\) , то \(\dfrac{S_{ABC}}{S_{A_1B_1C_1}} = \dfrac{AB\cdot AC}{A_1B_1\cdot A_1C_1}\) и \(\dfrac{S_{ABC}}{S_{A_1B_1C_1}} = \dfrac{AB\cdot BC}{A_1B_1\cdot B_1C_1}\) .

Из этих равенств следует, что \(\dfrac{AC}{A_1C_1} = \dfrac{BC}{B_1C_1}\) .

Аналогично доказывается, что \(\dfrac{AC}{A_1C_1} = \dfrac{AB}{A_1B_1}\) (используя равенства \(\angle B = \angle B_1\) , \(\angle C = \angle C_1\) ).

В итоге, стороны треугольника \(ABC\) пропорциональны сходственным сторонам треугольника \(A_1B_1C_1\) , что и требовалось доказать.

Теорема (второй признак подобия треугольников)

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Доказательство

Рассмотрим два треугольника \(ABC\) и \(A"B"C"\) , таких что \(\dfrac{AB}{A"B"}=\dfrac{AC}{A"C"}\) , \(\angle BAC = \angle A"\) . Докажем, что треугольники \(ABC\) и \(A"B"C"\) – подобны. Учитывая первый признак подобия треугольников, достаточно показать, что \(\angle B = \angle B"\) .


Рассмотрим треугольник \(ABC""\) , у которого \(\angle 1 = \angle A"\) , \(\angle 2 = \angle B"\) . Треугольники \(ABC""\) и \(A"B"C"\) подобны по первому признаку подобия треугольников, тогда \(\dfrac{AB}{A"B"} = \dfrac{AC""}{A"C"}\) .

С другой стороны, по условию \(\dfrac{AB}{A"B"} = \dfrac{AC}{A"C"}\) . Из последних двух равенств следует, что \(AC = AC""\) .

Треугольники \(ABC\) и \(ABC""\) равны по двум сторонам и углу между ними, следовательно, \(\angle B = \angle 2 = \angle B"\) .

Теорема (третий признак подобия треугольников)

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Доказательство

Пусть стороны треугольников \(ABC\) и \(A"B"C"\) пропорциональны: \(\dfrac{AB}{A"B"} = \dfrac{AC}{A"C"} = \dfrac{BC}{B"C"}\) . Докажем, что треугольники \(ABC\) и \(A"B"C"\) подобны.


Для этого, учитывая второй признак подобия треугольников, достаточно доказать, что \(\angle BAC = \angle A"\) .

Рассмотрим треугольник \(ABC""\) , у которого \(\angle 1 = \angle A"\) , \(\angle 2 = \angle B"\) .

Треугольники \(ABC""\) и \(A"B"C"\) подобны по первому признаку подобия треугольников, следовательно, \(\dfrac{AB}{A"B"} = \dfrac{BC""}{B"C"} = \dfrac{C""A}{C"A"}\) .

Из последней цепочки равенств и условия \(\dfrac{AB}{A"B"} = \dfrac{AC}{A"C"} = \dfrac{BC}{B"C"}\) вытекает, что \(BC = BC""\) , \(CA = C""A\) .

Треугольники \(ABC\) и \(ABC""\) равны по трем сторонам, следовательно, \(\angle BAC = \angle 1 = \angle A"\) .

\[{\Large{\text{Теорема Фалеса}}}\]

Теорема

Если на одной из сторон угла отметить равные между собой отрезки и через их концы провести параллельные прямые, то эти прямые отсекут на второй стороне также равные между собой отрезки.

Доказательство

Докажем сначала лемму: Если в \(\triangle OBB_1\) через середину \(A\) стороны \(OB\) проведена прямая \(a\parallel BB_1\) , то она пересечет сторону \(OB_1\) также в середине.

Через точку \(B_1\) проведем \(l\parallel OB\) . Пусть \(l\cap a=K\) . Тогда \(ABB_1K\) - параллелограмм, следовательно, \(B_1K=AB=OA\) и \(\angle A_1KB_1=\angle ABB_1=\angle OAA_1\) ; \(\angle AA_1O=\angle KA_1B_1\) как вертикальные. Значит, по второму признаку \(\triangle OAA_1=\triangle B_1KA_1 \Rightarrow OA_1=A_1B_1\) . Лемма доказана.

Перейдем к доказательству теоремы. Пусть \(OA=AB=BC\) , \(a\parallel b\parallel c\) и нужно доказать, что \(OA_1=A_1B_1=B_1C_1\) .

Таким образом, по данной лемме \(OA_1=A_1B_1\) . Докажем, что \(A_1B_1=B_1C_1\) . Проведем через точку \(B_1\) прямую \(d\parallel OC\) , причем пусть \(d\cap a=D_1, d\cap c=D_2\) . Тогда \(ABB_1D_1, BCD_2B_1\) - параллелограммы, следовательно, \(D_1B_1=AB=BC=B_1D_2\) . Таким образом, \(\angle A_1B_1D_1=\angle C_1B_1D_2\) как вертикальные, \(\angle A_1D_1B_1=\angle C_1D_2B_1\) как накрест лежащие, и, значит, по второму признаку \(\triangle A_1B_1D_1=\triangle C_1B_1D_2 \Rightarrow A_1B_1=B_1C_1\) .

Теорема Фалеса

Параллельные прямые отсекают на сторонах угла пропорциональные отрезки.

Доказательство

Пусть параллельные прямые \(p\parallel q\parallel r\parallel s\) разбили одну из прямых на отрезки \(a, b, c, d\) . Тогда вторую прямую эти прямые должны разбить на отрезки \(ka, kb, kc, kd\) соответственно, где \(k\) – некоторое число, тот самый коэффициент пропорциональности отрезков.

Проведем через точку \(A_1\) прямую \(p\parallel OD\) (\(ABB_2A_1\) - параллелограмм, следовательно, \(AB=A_1B_2\) ). Тогда \(\triangle OAA_1 \sim \triangle A_1B_1B_2\) по двум углам. Следовательно, \(\dfrac{OA}{A_1B_2}=\dfrac{OA_1}{A_1B_1} \Rightarrow A_1B_1=kb\) .

Аналогично проведем через \(B_1\) прямую \(q\parallel OD \Rightarrow \triangle OBB_1\sim \triangle B_1C_1C_2 \Rightarrow B_1C_1=kc\) и т.д.

\[{\Large{\text{Средняя линия треугольника}}}\]

Определение

Средняя линия треугольника – это отрезок, соединяющий середины любых двух сторон треугольника.

Теорема

Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Доказательство

1) Параллельность средней линию основанию следует из доказанной выше леммы .

2) Докажем, что \(MN=\dfrac12 AC\) .

Через точку \(N\) проведем прямую параллельно \(AB\) . Пусть эта прямая пересекла сторону \(AC\) в точке \(K\) . Тогда \(AMNK\) - параллелограмм (\(AM\parallel NK, MN\parallel AK\) по предыдущему пункту). Значит, \(MN=AK\) .

Т.к. \(NK\parallel AB\) и \(N\) – середина \(BC\) , то по теореме Фалеса \(K\) – середина \(AC\) . Следовательно, \(MN=AK=KC=\dfrac12 AC\) .

Следствие

Средняя линия треугольника отсекает от него треугольник, подобный данному с коэффициентом \(\frac12\) .

Вам интересно, как можно вычислить и найти среднюю линию треугольника. Тогда за дело.

Найти длину средней линии треугольника достаточно просто. Так как у треугольника три стороны, соответственно три угла и возможно может быть при построении три средних линий.

Что представляет собой треугольник:

Три стороны (равносторонний, равнобедренный)

Три угла (соответственно остроугольный, тупоугольный, прямоугольный треугольники)

Что такое средняя линия треугольника

Это отрезок. Отрезок соединяет середину двух сторон треугольника. У любого треугольника три средних линии.

Свойство 1: Средняя линия треугольника, параллельна стороне треугольника и равна его половине. Следовательно, для определения средней линии треугольника достаточно знать длину третьей стороны.

Пример: есть треугольник ABC, известно, что средняя сторона КN проведена параллельно АС. Длинна АС=8 см. AB=4 cм, ВС=4 см. Следовательно, для нахождения средней линии треугольника достаточно АС/2 и получить среднюю линию треугольника. Ответ: 4 см средняя линия в заданном треугольнике по существующим параметрам.

Свойство 2: Если в треугольнике провести три средних линий, то образуется четыре равных подобных треугольника. Коэффициент равен ½.

Свойство 3: Средняя линия равностороннего треугольника разбивает треугольник на трапецию и треугольник.

Пример решения задачи: Если мы нарисуем треугольник, то увидим, что вверху треугольника фигура с тремя углами. Внизу четырёхугольника фигура с двумя противоположными сторонами, которые параллельны друг другу.

Понятие средней линии треугольника

Введем понятие средней линии треугольника.

Определение 1

Это отрезок, соединяющий середины двух сторон треугольника (Рис. 1).

Рисунок 1. Средняя линия треугольника

Теорема о средней линии треугольника

Теорема 1

Средняя линия треугольника параллельна одной из его сторон и равна её половине.

Доказательство.

Пусть нам дан треугольник $ABC$. $MN$ - средняя линия (как на рисунке 2).

Рисунок 2. Иллюстрация теоремы 1

Так как $\frac{AM}{AB}=\frac{BN}{BC}=\frac{1}{2}$, то треугольники $ABC$ и $MBN$ подобны по второму признаку подобия треугольников. Значит

Также, отсюда следует, что $\angle A=\angle BMN$, значит $MN||AC$.

Теорема доказана.

Следствия из теоремы о средней линии треугольника

Следствие 1: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 3).

Рисунок 3. Иллюстрация следствия 1

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Следствие 2: Три средние линии треугольника делят его на 4 треугольника, подобных исходному треугольнику с коэффициентом подобия $k=\frac{1}{2}$.

Доказательство.

Рассмотрим треугольник $ABC$ со средними линиями $A_1B_1,\ {\ A}_1C_1,\ B_1C_1$ (рис. 4)

Рисунок 4. Иллюстрация следствия 2

Рассмотрим треугольник $A_1B_1C$. Так как $A_1B_1$ - средняя линия, то

Угол $C$ - общий угол этих треугольников. Следовательно, треугольники $A_1B_1C$ и $ABC$ подобны по второму признаку подобия треугольников с коэффициентом подобия $k=\frac{1}{2}$.

Аналогично доказывается, что треугольники $A_1C_1B$ и $ABC$, и треугольники $C_1B_1A$ и $ABC$ подобны с коэффициентом подобия $k=\frac{1}{2}$.

Рассмотрим треугольник $A_1B_1C_1$. Так как $A_1B_1,\ {\ A}_1C_1,\ B_1C_1$ -- средние линии треугольника, то

Следовательно, по третьему признаку подобия треугольников, треугольники $A_1B_1C_1$ и $ABC$ подобны с коэффициентом подобия $k=\frac{1}{2}$.

Теорема доказана.

Примеры задачи на понятие средней линии треугольника

Пример 1

Дан треугольник со сторонами $16$ см, $10$ см и $14$ см. Найти периметр треугольника , вершины которого лежат в серединах сторон данного треугольника.

Решение.

Так как вершины искомого треугольника лежат в серединах сторон данного треугольника, то его стороны -- средние линии исходного треугольника. По следствию 2, получим, что стороны искомого треугольника равны $8$ см, $5$ см и $7$ см.

Ответ: $20$ см.

Пример 2

Дан треугольник $ABC$. Точки $N\ и\ M$ -- середины сторон $BC$ и $AB$ соответственно (Рис. 5).

Рисунок 5.

Периметр треугольника $BMN=14$ см. Найти периметр треугольника $ABC$.

Решение.

Так как $N\ и\ M$ -- середины сторон $BC$ и $AB$, то $MN$ -- средняя линия. Значит

По теореме 1, $AC=2MN$. Получаем: